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The Problem

• EOSPAC: interpolation on equation-of-state tables (2D arrays)
• Interpolation requires searching for elements bounding target in an array
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Hunt & Locate

• The old search algorithm in EOSPAC
• Jumps to produce bounds within which to perform binary search
• Uses previous index to start next search
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Constraints 🔒

• Data array D much smaller than targets array T, and never changes
• Data array is logarithmically distributed
• Can’t use multithreading L
• Possibility of many search calls
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Vectorization ⏩

• Compilers can produce vector (SIMD) 
instructions

• SIMD: Single Instruction, Multiple Data
• They do what it sounds like they do

A[1] A[2] A[3]A[0]

Vector width: 256 bits

for (int i = 0; i < 4; i++) {
C[i] = A[i] * B[i];

}

B[1] B[2] B[3]B[0]

C[1] C[2] C[3]C[0]

* * * *

= = = =
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Vectorization ⏩

• Compilers can produce vector (SIMD) 
instructions

• SIMD: Single Instruction, Multiple Data
• They do what it sounds like they do

0

for (int i = 0; i < 16; i++) {
C[i] = A[i] * B[i];

}
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Vectorization ⏩ for (int i = 0; i < 256; i++) {
C[i] = A[i] * B[i];

}

Loop can be vectorized

float z = 0.0f;
for (int i = 0; i < 256; i++) {

C[i] = A[i] * B[i] + z;
z = A[i] + B[i];

}

Loop can’t be vectorized – memory dependency 
between iterations

• Vectorization is constrained
− NO dependency b/w loop iterations
− NO non-inline function calls

§ (With a few exceptions)
− SOME branching, but it’ll be masked: 

both branches are evaluated but the 
result from the untaken branch will be 
ignored

• Varies significantly by compiler
for (int i = 0; i < 256; i++) {

if (A[i] == 0) {
...

} else {
...

}
}

Loop vectorized but each iteration will be as slow 
as the slowest branch
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Preventing Masking

• Sometimes masking can result in worse performance due to overhead
• Prevent masking by removing as much branching as possible

int branchless_choice(int cond, int vtrue, int vfalse) {
return vtrue ^ ((vfalse ^ vtrue) & -(!cond));

}

Branching is simulated with bitmask

if (A * B == 3) {
C = 5;

} else {
C = 10;

}

C = branchless_choice(A * B, 5, 10)

00000001

00000000

00000000

cond=true

!

-

00000011vtrue=3

00001010vfalse=5

00001001^

00000000&

00000011vtrue=3

00000011^

=
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Preventing Masking

• Sometimes masking can result in worse performance due to overhead
• Prevent masking by removing as much branching as possible

int branchless_choice(int cond, int vtrue, int vfalse) {
return vtrue ^ ((vfalse ^ vtrue) & -(!cond));

}

Branching is simulated with bitmask

if (A * B == 3) {
C = 5;

} else {
C = 10;

}

C = branchless_choice(A * B, 5, 10)

00000000

00000001

11111111

cond=false

!

-

00000011vtrue=3

00001010vfalse=5

00001001^

00001001&

00000011vtrue=3

00001010^

=
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Goals 🌟

• Get us an algorithm that can do both:
− Utilize vectorization as much as possible
− Perform well within EOSPAC’s constraints

• Data array (D) doesn’t change! Can we use that to our advantage?
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Skiplist Search ⏭

• Create “skiplist” which “skips” over 8 values (size of cache line) of D at a time
• Binary search on skiplist to find bounds

• Linear search through these bounds
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SIMD Hunt & Locate

• Modified version of Hunt & Locate with memory dependency removed
• Faster than binary search when target is near beginning of D
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Binning-Based Search 🗑

• Bin (hash) values by the floor of their base-N logarithm
• Choose N to fit data into size of H, the hashtable

1.2 2.3 8.8 25.7 135 250 850

100
H[0] = 0

101
H[1] = 3

102
H[2] = 4

D

H
N=10
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Binning-Based Search 🗑

• Take logN of target, then perform secondary search in that bin
• Can use any search algo for secondary search (we tried linear and binary)

1.2 2.3 8.8 25.7 135 250 850

100
H[0] = 0

101
H[1] = 3

102
H[2] = 4

D

H
N=10

0 1 2 3 4 5 6

175 ⌊log10(175)⌋ = 2
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Binning-Based Search 🗑

• Very cool! But how to choose N?
• Like this:

• Now N is just the right size so that the range of values in D is fully contained 
within H (however large we choose to make it)

← We want number of powers 
of N in D to equal size of H
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Faster

• Logarithm function is slow and just plain sucks when vectorizing 👎
• How to get log of x without log10(x)?
...
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Faster!

• Logarithm function is slow 👎
• How to get log of x without log10(x)?
• Extract exponent bits from float!

1 0 0 0 1 0 0 10 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1

137-127 = 10

1450.12123 ≈ 1.416134×210

• But now the smallest N we can use is 2, so is it fast enough to make up for it?
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Results

• Searching for 5 mil values in size 110 
array

• Only Intel compiler was able to 
vectorize L



196/15/21

Results: Masking

• Sometimes results in worse performance
• Compare versions with and without 

branching
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Results

• Large performance gains from 
vectorization
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Results

• Exponent hash search does the best 
relative to Hunt & Locate
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What Does it All Mean?

• Vectorization can be utilized to speed up certain kinds of algorithms
• Compilers are tough to wrangle
• Search time can be improved when constraints are taken into account
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That’s all, folks!
Feel free to take this moment to cogitate and ask some questions


